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The spatial development of planar incompressible countercurrent shear layers was
investigated experimentally. A facility was constructed to establish countercurrent
shear layers without the formation of global stagnation in the flow. Particle image
velocimetry was employed to obtain detailed measurements within the region of self-
preservation for velocity ratios U2/U1 between 0 and −0.3. The spatial growth rate of
countercurrent shear layers was found to agree generally with simple analytical theory.
At 30 % counterflow, the growth rate was approximately twice as large as the case
with no counterflow. Peak turbulence quantities, when normalized by the applied shear
magnitude, �U , were found to be nominally constant for low levels of counterflow, but
at counterflow velocities above 13 % of the primary stream velocity, peak turbulence
levels increased. The observed transition is accompanied by the development of mean
flow three-dimensionality. The deviation occurs at a counterflow level that is in agree-
ment with theoretical predictions for transition from convective to absolute instability.

1. Introduction
Turbulent shear layers have been one of the most studied shear flows for several

decades. Emerging diagnostic techniques and computational methods in recent years
have greatly improved our understanding of shear layers, but many aspects have yet
to be understood which motivates the continuing work in this area. Additionally,
certain shear layer regimes have received limited attention.

Numerous investigators have studied the dynamics of coflowing planar shear layers
and round jets over the years (e.g. Spencer & Jones 1971; Brown & Roshko 1974;
Rodi 1975; Dziomba & Fiedler 1985; Mehta & Westphal 1986). In contrast, the
counterflowing shear layer has received relatively little attention. In fact, until the
1990s only the temporal development of the countercurrent shear layer had been
studied experimentally (Thorpe 1968, 1971; Ramshankar 1988). Countercurrent shear
layers are ubiquitously present in flows containing boundary-layer separation, hence
are relevant to many applications.

The primary goal of this work is to carefully document for the first time the dyna-
mics of a self-preserving planar countercurrent shear layer. A range of counterflow
levels from 0% to 30 % of the primary stream velocity are studied in a facility designed
to minimize mean flow three-dimensionality. The results will add to the extensive
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knowledge of free shear layers that has been previously examined predominantly in
the coflowing regime.

2. Background
The shear-layer velocity profile is unstable at all practical Reynolds numbers

(Drazin & Reid 1981). For the common spatially developing shear layer, disturbances
in the base flow are amplified in the streamwise direction and undergo a transition to
a fully turbulent state. At some point downstream of the origin, the turbulent shear
layer should become independent of its initial conditions (Townsend 1976), i.e. reach a
self-preserving, or self-similar, state. Self-similarity is a state of local equilibrium where
flow quantities are only dependent upon local variables, including the primary and
secondary mean velocities, shear layer width, etc. as measured at the local streamwise
position. In theory, all time-averaged flow quantities such as Ū , V̄ , u′

rms, v
′
rms, u

′v′, and
other higher-order terms should be self-preserving when properly normalized by local
coordinates. Mehta & Westphal (1986) present a set of conditions that are required
for self-similarity of free shear layers. Oster & Wygnanski (1982) discuss the universal
self-similarity of shear layers and provide insight into sources of data scatter observed
in the literature.

Not all workers follow the same guidelines for establishing similarity, and the deter-
mination is subjective even when following the same guidelines. A comprehensive
review (Birch & Eggers 1972) was performed of the shear-layer literature and it was
found that very few authors demonstrated similarity in turbulent quantities. They pre-
sented a comparison of growth rates by numerous investigators and found tremendous
scatter. The scatter was attributed mainly to insufficient development distances in most
facilities. A more recent review by Ho & Huerre (1984) describes various fundamental
aspects of shear layers including turbulent structures and linear stability theory.

2.1. Countercurrent shear layers

The first systematic attempt at establishing a spatially evolving planar countercurrent
shear layer was made by Humphrey & Li (1981). Their facility consisted of opposing
momentum-driven streams separated by splitter plates and bounded by the walls of
a closed circuit wind tunnel. While the purpose of the study was to create a mixing
region between the opposing streams, the flow set up a global stagnation zone at a
scale commensurate with the test section itself. Essentially, the primary and secondary
streams came to rest, causing each to turn and exhaust 180◦ from the direction in
which they entered. The global stagnation disrupted the ability of the shear to promote
turbulent mixing.

Huerre & Monkewitz (1985) provided further insight into this flow as they explored
the spatial-temporal stability of the planar shear layer. They discovered that the shear
layer experiences a transition from convective to absolute instability when the secon-
dary reverse stream achieves a velocity magnitude greater than approximately 13 % of
the primary forward stream (λ= 1.315, r = −0.136 where λ=(U1 − U2)/(U1 + U2) and
r = U2/U1). The implications of this stability transition – strictly valid for parallel
flows – on the development of a spatially developing flow were investigated in a
laboratory setting by Strykowski & Niccum (1991, 1992).

They generated countercurrent shear in the near field of an initially laminar round
jet and demonstrated the existence of a rather abrupt transition near λ=1.3, which
was in good agreement with the theoretical value predicted by Huerre & Monkewitz.
Shear-layer oscillations were found at a discrete frequency as the flow set up an
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inherent feedback, which is suggestive of a global instability. In the absolutely unstable
regime, the typical laminar shear-layer vortex pairing in the developing region was
suppressed. Consequently, the shear-layer growth was actually reduced, much as was
seen in previous forcing experiments (e.g. Dziomba & Fiedler 1985).

Wilcoxon (1996) studied the dynamics of a turbulent jet with counterflow applied to
the jet periphery. An extension collar was used to increase the streamwise length over
which counterflow was developed. It was found that the length of the collar had a
strong impact on the turbulence control in the shear layer of the jet, and the shear-
layer growth increased with increased counterflow levels (Strykowski & Wilcoxon
1993).

Khemakhem (1997) was the first to attempt to study the planar countercurrent tur-
bulent shear layer in a partially unconfined manner. Khemakhem used a momentum-
driven primary stream and a suction-driven secondary stream to set up a countercur-
rent shear layer that did not develop the global stagnation observed by Humphrey &
Li (1981). Khemakhem was able to demonstrate some basic features of the shear layer,
but difficulties in using hot wires to measure flow in two streamwise directions led
to uncertainties in the data. Khemakhem also constructed a smaller countercurrent
facility designed to accommodate particle image velocimetry (PIV). Although a global
stagnation was not found in the new facility, it was burdened by a highly three-
dimensional mean flow.

While the basic features of countercurrent shear layers have been documented
over a range of conditions (including jets at low and high Reynolds numbers), the
basic physics of a planar countercurrent turbulent shear layer remain unexplored. The
motivation for the present work was to fill this gap in our fundamental understanding
of this flow.

3. Approach and instrumentation
The experiments were performed in a fan-driven wind tunnel in the Shear Flow

Control Laboratory at the University of Minnesota. The primary stream is momentum
driven by an Aerovent 710-BIA CBD belt-driven fan, which is powered by a 15 h.p.
Toshiba electric motor. The motor speed is controlled by a Toshiba–Houston Tosvert-
130 H1 transistor inverter. The air from the fan goes through a round to square diffuser
section and then around two corners with high-efficiency turning vanes. The flow is
conditioned by a honeycomb flow straightener and fine-mesh screens before entering
a contraction from 46 in. × 46 in. down to the 18 in. × 18 in. primary test-section inlet.

The secondary stream is driven by a suction-type Cincinnati PB-12A centrifugal
fan, which is powered by a 2 h.p. Dayton electric motor. The motor speed is controlled
by a Toshiba VF Pack-P transistor inverter. A round-to-rectangular expansion with
a honeycomb flow straightener connects the suction pump to the 6.5 in. high by 18 in.
wide secondary test-section entrance.

The test section of the shear-layer facility is shown in figure 1. The walls are made
out of 1/2 in. clear acrylic for optical access. A 1 in. thick aluminium splitter plate
separates the flows over the first 12 in. of the test section. The splitter plate is flat on
the primary side and has a contraction over the last 3.5 in. of the secondary side to
a tip thickness of approximately 0.4 mm. The top wall of the test section is 1/2 in.
thick clear acrylic 36 in. in length and has a pivot allowing for variable upper wall
angles relative to the streamwise axis. The bottom wall of the test section has a pivot
below the splitter-plate tip. The lower wall consists of flat, 1/2 in. thick, 24 in. long
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Figure 1. Countercurrent shear-layer test-section schematic.

clear acrylic portion with a semi-circular bellmouth ‘entrance’ of 27◦ of a 18 in. radius
circle made of reinforced sheet metal.

The test section is 18 in. in width. The splitter tip is the origin for the streamwise (x)
and transverse (y) coordinates, and the spanwise (z) axis is coincident with the splitter-
plate trailing edge. The upper and lower tunnel walls have static pressure taps in the
midspan plane spaced at 2 in. intervals in the streamwise direction. Identical surfaces
without pressure taps were used during PIV data collection to enable improved
optical access. The wind tunnel has static pressure taps upstream and downstream of
the contraction used to indicate the primary stream velocity. The secondary stream
velocity is monitored with a static pressure tap mounted on the flat portion of the lower
wall 3 in. upstream (relative to the primary flow) of the splitter-plate tip. Additional
hardware details can be found in Tang (2002).

Hot-wire measurements were used to locate the streamwise location where self-
similarity is reached. With this information at hand, detailed measurements were made
in the self-similar region using PIV. Laskin nozzle aerosol generators were used to
create the olive oil droplets used as tracer particles predominantly in the sub-micron
range (Gerbig & Keady 1985). A Continuum Surelite II-10 Nd:YAG dual-head laser
system produced beams at a wavelength of 532 nm that were transformed into a thin
light sheet using a −50 mm cylindrical lens and a 1000 mm spherical lens. A 45◦ angled
mirror directs the sheet to the test section where the beam waist of approximately
0.113 mm occurs.

The PIV system used a TSI model 610032 synchronizer to control the timing of the
various elements of the PIV system. The lasers were fired in succession to create two
light sheets closely spaced in time. The light scattered off the seeded particles is
captured by a TSI Model 630046 cross-correlation camera with a maximum aperture
of f = 2.8. A frame-grabber card transfers the digital images from the camera to
the host computer. The images were captured and processed using TSI’s Insight®

software version 2.0.

3.1. Preliminary observations

High primary stream velocities were desirable to achieve self-similarity at a reasonable
streamwise distance, thus creating a region of self-similarity that could be carefully
examined using PIV. To evaluate the quality of the primary flow stream near the
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Figure 2. Boundary-layer profiles near the splitter-plate trailing edge.

maximum tunnel speed of 32 m s−1, the facility was run in a single-stream shear-
layer configuration with the lower tunnel wall removed to allow free entrainment of
ambient air. A hot-wire positioned at the centre of the primary stream was used to
capture time records to compute the power spectral density of the background flow
disturbances. The power spectra indicated low-amplitude peaks associated with the
fan blade passage frequency (these peaks were monitored carefully throughout the
study, and were consistently absent above the natural disturbances in the shear layer
itself). The free-stream turbulence level was consistently below 0.15 % of the primary
velocity based on the streamwise velocity component integrated over a frequency
range of 1 Hz to 5 kHz.

The uniformity of the primary stream was investigated for the simplified single-
stream configuration. A vertical velocity profile was taken with the hot-wire probe in
the midspan plane. A spanwise profile was also taken at the centre of the transverse
dimension. Both traces showed that the velocity varied somewhat across the test
section, but the maximum difference in the cross-stream and spanwise directions was
less than 1 % of the mean value outside the thin boundary layers. Further details of
the wind-tunnel benchmarking are found in Tang (2002).

With the hot-wire probe positioned in the midspan plane, a vertical profile was taken
to measure the boundary layer at the splitter-plate tip. The boundary layer had a
thickness of δ99 = 0.33 cm and a shape factor of H = 2.52, which corresponds to a
Reynolds number of Reθ = 790. The normalized velocity profile is shown in figure 2
as the ‘untripped’ data. An exploration of the existing shear-layer data tends to
suggest that a turbulent boundary layer may lead to a shorter streamwise distance
to achieve similarity (Mehta & Westphal 1986; Bell & Mehta 1990). Furthermore, a
turbulent boundary layer can help minimize facility-dependent initial conditions that
may pervade the results. With a suitably tripped boundary layer, the background
disturbances are found to be more broadband than the disturbances in the laminar
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Figure 3. Upper wall static pressure profiles.

setting. In addition, if variation appears in the span initially, measurements may need
to be spanwise averaged (Bell, Plesniak & Mehta 1992).

A Velcro® strip was glued 12 in. upstream of the splitter-plate trailing edge to trip
the boundary layer. The Velcro is 1 in. wide and 1/16 in. thick with a cross-hatching
pattern to the bristles, which are spaced about 1/64 in. apart. A profile was run for the
tripped boundary layer at the splitter-plate tip in the same spanwise location as for
the laminar case (at the midspan, z =0.0 in.). The boundary-layer profiles are shown
in figure 2. The tripped boundary layer had a thickness of δ99 = 1.10 cm with a shape
factor of H = 1.49 and Reθ = 2230. These results indicate that the tripped boundary
layer was indeed fully developed. The Velcro trip was left in place and the spanwise
uniformity of the boundary layer was then examined. Splitter-plate-tip boundary-layer
profiles were run at five evenly spaced locations across the span. These profiles are
also shown in figure 2. The average shape factor of the profiles is H = 1.52.

Both the upper and lower walls of the facility have the ability to be deflected in an
attempt to remove any streamwise pressure gradients that may exist. First, the upper
wall was kept flat while the angle of the lower wall was adjusted downwards. The
primary stream was held fixed at 31 m s−1 and pressure traces were taken at each
lower wall position for counterflow levels from 0 % to 25 %. The results indicated
a general need for a larger lower wall deflection angle with increased counterflow,
which is intuitive as a shear layer should grow more rapidly with increased shear.
There was, however, a significant cross-stream pressure gradient.

A Pitot-static survey of the secondary stream showed a drop in total pressure over
the downstream half of the lower wall along the streamwise direction. Although the
primary flow was not physically attached to the lower tunnel wall, it was determined
that the shear layer was close enough to the lower wall to have an impact on the
total pressure of the secondary stream. The basic conclusion from this rudimentary
study is that the distance from the bottom of the shear layer to the lower wall at the
secondary stream entrance should be at least of the order of the shear layer width
at that point. Once a fixed lower-wall deflection was chosen, a similar study was
performed for the upper wall. A constant upper-wall deflection of −0.8◦ was deemed
adequate for all of the counterflow cases, as static pressure traces in figure 3 show
minimal streamwise pressure variation, suggesting nominally constant primary stream
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velocities. The velocity difference between the two streams is held constant to within
2 % over the streamwise region where the self-similar characteristics were explored.
The final orientation of the upper and lower tunnel walls are shown in figure 1.

It is well established that hot-wire probes are inherently unsuitable for measuring
the velocity in flows that experience significant reverse velocities and high local
turbulence levels, both of which are present in the countercurrent shear layer. While
a careful examination of the shear layer was not possible using hot wires, their ease
of operation rendered the hot-wire probe very useful for determining the approximate
streamwise location of the onset of self-similarity at each velocity ratio studied.

Because of the limitations of hot wires in such a complex flow, PIV was employed
to measure complete velocity fields. A minimum of 500 image pairs were acquired
to limit the uncertainty of low-order turbulent statistics. Each image is divided into
interrogation regions; adjacent interrogation regions are overlapped by 50 % in order
to increase spatial resolution while satisfying the Nyquist criterion. For the present
study, the Gaussian sub-pixel approximation function was chosen as it has been
found to yield the lowest bias error for the present PIV system (Forliti, Strykowski &
Debatin 2000).

An aperture setting of f = 2.8 with slight defocusing was chosen, and the peak-
locking bias error is estimated to be 0.015 pixels, or 0.25 % of the maximum displace-
ment. An additional error is due to window bias, a manifestation of particle clipping
on the edges of the interrogation region. The estimated window bias error is 0.02
pixels for the 64 × 64 case and 0.06 pixels for the 32 × 32 case. Details of the peak-
locking and window bias studies can be found in Tang (2002). The precision error of
the mean velocity calculations using 500 images (i.e. samples) in the middle of a shear
layer can be estimated using the streamwise turbulence as the variance. The precision
error of the mean velocity is approximately 1.6 % for the single-stream shear layer.
Precision error of the standard deviation (e.g. u′

rms) is approximately 6 %.

4. Results and discussion
While a careful examination of the shear layer was not possible using hot wires,

their ease of operation rendered the hot-wire probe very useful for determining
the approximate streamwise location of the onset of self-similarity for each velocity
ratio. Typically linear spatial growth of the layer is used as the lowest-order statistic
necessary to justify self-similarity. The local length scale of the shear layer is usually
based on characteristics of the entire layer (e.g. momentum thickness, pitot thickness,
or vorticity thickness), but this was not reasonable from hot-wire data owing to the
reverse flow and high local turbulence levels, so a modified experimental thickness,
δexp, was defined for this purpose. The experimental thickness is based on the width of
the layer between the 95 % upper boundary and the 50 % ‘middle’ of the layer. Note
that the x % location, denoted yx , is the vertical position where the mean velocity U

is equal to U 2 + x(U 1 − U 2). The advantage of employing δexp was that it could be
measured accurately with the hot-wire probe for all velocity ratios.

Figure 4 shows the mean velocity profiles of the single-stream shear layer measured
with the hot-wire probe for a range of distances downstream of the splitter plate.
U2 was assumed to be zero for the single-stream shear-layer case. This leads to an
apparent positive secondary stream velocity. This is mostly due to the hot wire captur-
ing an entrainment velocity that is low-speed and likely to be nearly perpendicular to
the primary flow. This has been noted in a number of studies of single-stream shear
layers (e.g. Liepmann & Laufer 1947).



248 D. J. Forliti, B. A. Tang and P. J. Strykowski

xxxxxxx
x

x
x

x
x

x
xx

xxxxxxxxxx
x

x
x

x
x

x
x

x
x

x

x
x

xxxxx

++++++
++

+
+

+
+

++
++

++++++++
+

++
+

+
+

+
+

+
+

+
+

+
+

++++

–2 –1 0 1 2
0

0.5

1.0

U – U2

U1 – U2

5.0
10.0
15.0
20.0
25.0
30.0
32.5

40.0
42.5
45.0
47.5
50.0
52.5
55.0

error function

35.0x
37.5+

57.5
60.0
62.5
65.0

x (cm)

y – y50

δexp

Figure 4. Mean streamwise velocity profiles for the single-stream shear layer (λ= 1.0)
obtained using a hot-wire probe.

The single-stream mean velocity profiles appear to collapse at streamwise distances
greater than 15 cm downstream of the splitter plate. Figure 4 also shows how the
normalized mean profiles compare to a least-squares-fit error function. It is clearly
seen that the error function is not a good representation of the shape of the single-
stream shear layer. In fact, it does a rather poor job of approximating the edges of
the shear layer. The comparison to the error function highlights the asymmetry in the
mean velocity profile of the single-stream shear layer.

In the most stringent sense of the word, a flow is self-similar only when the higher-
order turbulent terms collapse when normalized by local quantities (Townsend 1976).
The fluctuating velocity measured by the hot-wire probe for the single-stream shear
layer was normalized by the velocity difference in the free streams and plotted versus
the normalized position. Figure 5 shows that the turbulence profiles do ultimately
collapse, but at a larger streamwise distance compared to the mean profiles. The
collapsed profiles are fairly smooth with slight asymmetry about the shear-layer
centre with a peak value shifted slightly towards the high-speed side. This is in good
agreement with the numerous single-stream shear-layer studies (e.g. Liepmann &
Laufer 1947; Yule 1971) with a possible exception being the peak value.

Based upon a visual inspection of the hot-wire measurements, the turbulent profile
for the single-stream shear layer (i.e. r = 0) attains self-similarity at a distance of
approximately 37.5 cm downstream of the splitter-plate tip, clearly a subjective inter-
pretation. An alternative way of looking at the turbulence self-similarity is the stream-
wise distance where the peak turbulence intensity asymptotes to a constant value
(Bradshaw 1966).

A similar procedure is followed for the cases with counterflow. A comprehensive
summary of the hot-wire profiles used to establish the onset of self-similarity can
be found in Tang (2002). Results of the hot-wire study regarding the approximate
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Figure 5. Root mean square streamwise velocity fluctuation profiles for the single-stream
shear layer (λ=1.0) obtained using a hot-wire probe.

r x0/θ0 y0/θ0 xsp/θ0

0.00 33.3 −2.7 286
−0.09 35.5 −3.4 220
−0.13 34.2 −3.7 200
−0.19 −6.8 0.8 241
−0.24 −5.7 0.8 218
−0.29 −2.7 0.5 215

Table 1. Summary of shear-layer similarity characteristics.

locations of self-preservation onset (xsp) as well as virtual origins (x0, y0) are shown
in table 1. The momentum thickness θ0 for the primary stream at the splitter-plate
trailing edge is equal to 0.12 cm.

PIV for each velocity ratio was begun at the streamwise location where self-
similarity was established based on the hot-wire surveys. Multiple overlapping
domains were required to cover the height of the shear layer as well as to satisfy the
optical requirements of the PIV diagnostic. Three domains were patched together for
the streamwise width and three or four domains were patched together for the
transverse height, the latter needed for shear layers experiencing high spatial growth.
The patched domains allow for the entire shear layer width to be quantified and
possess enough streamwise measurements to determine growth rates and self-similar
velocity profiles.

To gain a qualitative sense of the structures present in the countercurrent shear layer,
PIV data were taken in the developing region where the entire shear layer is sufficiently
thin to be captured by a single image. The camera was positioned at a streamwise
location of x = 10 cm. This was estimated to be the farthest downstream region where
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Figure 6. Representative instantaneous velocity vector fields in the developing region.
(a) r =0, λ= 1.0; (b) r = −0.3, λ= 1.86.

(a)
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Diffused Entrainment Stagnation

Figure 7. Instantaneous velocity vector fields in the convecting reference frame for
(a) r = 0.0 and (b) r = −0.30.

the camera could capture the entire shear-layer height for all counterflow levels.
This region was chosen to examine shear-layer structure and hence was positioned
upstream of the self-similarity region; 100 image pairs were captured for each of the
six velocity ratio cases. Figure 6 shows a comparison of representative instantaneous
velocity fields for the single-stream and 30 % counterflow cases seen in the reference
frame stationary with respect to the splitter plate. Flow structures were apparent in all
images captured, but there is no indication of the classic coherent structures seen by
Brown & Roshko (1974). The tripped boundary layer appears to have removed any
dominant coherence. Although no ‘clean’ structure was observed in the velocity fields,
it can be seen that the mixing region is much thicker for the case with counterflow.

To examine this further, random images were studied in the convective reference
frame. Figures 7(a) and (b) show three representative instantaneous velocity fields
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(a) (b)

Figure 8. Mean velocity vector fields for (a) r = 0, λ= 1.0 and (b) r = −0.30, λ= 1.85.

for the single-stream and 30 % counterflow cases. The estimated convective velocity,
Uc = (U1 + U2)/2, has been subtracted from the entire velocity field such that the
structures can be seen more clearly. The structures are confined to a relatively narrow
transverse region for the single-stream shear layer (r =0.0) compared to the consider-
able domains for the high counterflow case (r = −0.3). This is striking, given that the
same physical location was selected to compare the two flows. It is clear, however,
that multiple scales are present. This location roughly corresponds to the onset of
mean field self-similarity for all cases as found in the hot-wire study.

The qualitative behaviour observed in the high counterflow vector fields seem to
fall into three broad types of activity. Several vector fields show what appears to be a
fairly thick mixing region between the two high-speed streams. Large scales that span
the entire mixing zone (like those observed by Brown & Roshko) are not present. The
velocity magnitudes in the mixing region are low in this reference frame. The second
qualitative feature that was observed in many of the vector fields is intense large-scale
entrainment. In this state, there appears to be an instantaneous bulk mass exchange
between the two streams, in the case shown in figure 7, the flux is from the upper
stream to the lower stream. Although subjective, we can see evidence of a large-scale
vortical structure present on the left-hand side of the middle vector field in figure 7(b).
The third feature often observed in the set of vector fields shows a strong interaction
that suggests the two streams are forming a stagnation point. A clear stagnation point
can be seen in the right most vector field of figure 7(b). Each vector field obtained
for this case fell into one of these three broad categories, although some vector fields
contained features of more than one state.

With these qualitative features as a background, we can re-examine the single-
stream shear-layer vector fields and observe that some of these same features seem to
exist, albeit on a smaller scale. The single-stream shear layer is approximately half as
thick as the two-stream shear layer, thus the dynamic features will scale accordingly.
Although the vector fields for the two cases seem to be quite different, the basic
qualitative features appear to be present in both cases.

Before proceeding with a detailed description of the mean and turbulent character-
istics of the countercurrent shear layer, it is necessary to address the facility-dependent
nature of the flow. Figure 8 shows the mean vector fields for the single-stream shear
layer and 30 % counterflow cases. These data are taken in the downstream region
where the hot-wire results suggest the flow should be self-similar. Only a small
number of the vectors are shown for clarity. The single-stream shear layer shown
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in figure 8(a) is seen to spread with downstream distance as expected. The vectors
on the low-speed side have very small magnitudes, but it can be seen that they are
oriented vertically towards the high-speed stream owing to the induced entrainment
flow caused by the shear-layer mixing. The lower wall was removed for this case, as
it would have influenced the entrainment process of the shear layer and rendered the
results strongly facility dependent.

The 30 % counterflow mean vector field shown in figure 8(b) shows the angled
secondary flow caused by the orientation of the lower wall (see figure 1). This was
deemed necessary in order to generate a secondary flow that has constant pressure
and accommodates the large spreading rate of the countercurrent shear layer. Large
shear-layer spreading rates imply high levels of mass entrainment, hence a vertical
component in the secondary stream will be required to match the entrainment
needs of the shear layer. This is clearly one of the fundamental differences between
countercurrent and high coflowing shear layers.

Traditionally, the velocity ratio is defined using the free-stream u-velocity com-
ponent; however, because of the orientation of the velocity vectors in the secondary
stream, an alternative definition of the velocity ratio was also employed. This modified
velocity ratio is based on the momentum of the respective streams, and is calculated
from:

λ∗ =
|U1| + |U2|
|U1| − |U2| . (4.1)

Equation (4.1) is only valid for countercurrent shear layers (the signs in the
numerator and denominator are switched for coflowing layers). The difference is that
the free-stream velocities U1 and U2 have been replaced by the velocity magnitudes
of the streams. The primary stream deflection was small, so the difference between λ
and λ∗ is driven by the magnitude of the transverse velocity in the secondary stream.
The difference between λ and λ∗ is 3 % at r = −0.3. From this point on, λ values
reported for the PIV results will actually be based on λ∗.

Figure 9 shows the mean and fluctuating velocity profiles using normalized variables
for the intermediate counterflow case of r = −0.19. The patched measurement domain
consists of 163 cross-stream profiles; only seven profiles were plotted for clarity. The
transverse distance is normalized by the local experimental thickness δexp. The mean
streamwise velocity profiles in figure 9(a) have clearly attained similarity and collapse
very well. Figures 9(b) and 9(c) show reasonable collapse of the data, although scatter
has increased relative to the mean velocity profiles. Figure 9(d) shows the Reynolds
stress profiles for this case, and shows increased scatter as expected for higher-order
statistics. Similar plots for each velocity ratio were used to establish the location
where self-similarity begins, which is slightly downstream of the upstream edge of
the PIV measurement domain and is governed typically by the high-order quantities.
However, with the exception of a small region in the upstream portion of the PIV
measurement range, the shear layer has attained a self-preserving state for all six
counterflow cases. For growth rate and turbulence statistics comparisons, only the
values in the similarity region will be considered.

Since the experimental thickness only accounts for the high-speed half of the shear
layer, a different measure of shear-layer thickness was desired that is based on the full
velocity profile. The vorticity thickness was recommended by Brown & Roshko (1974)
because it is based on the magnitude of shear, which is the driving force behind the
mixing. The error function was fit to the mean profiles between the 40 % and 60 %
velocity lines, where the data tend to match the error function shape (see figure 4).
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Figure 9. Mean and r.m.s. fluctuating velocity profiles for r = −0.19.

Unlike the hot-wire data, the PIV velocity profiles are accurate and uncontaminated
by local turbulence intensity effects, so a least-squares fit was employed to find the
spreading parameter σ used to define the similarity variable

η =
σ (y − y50)

x − x0

, (4.2)

that is based on the formulation

U − U 2

U 1 + U 2

= 1
2

+ 1
2
erf(η). (4.3)

This is the analytical solution for a fully developed shear layer using a simple
eddy-viscosity turbulence model (e.g. Schlichting 1979). The spreading parameter is
inversely proportional to the shear-layer growth rate. Once the spreading parameter
is found, it can be related to the vorticity thickness growth rate

δ′
ω =

dδω

dx
=

√
π

σ
(4.4)

for the error function velocity profile. The vorticity thickness is defined as

δω =
U 1 − U 2(
dU

dy

)
max

. (4.5)
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r λ x/θ0 dδexp/dx dδω/dx σ u′
max/�U v′

max/�U −u′v′
max/�U

2

0.00 1.00 >319 0.080 0.144 12.27 0.157 0.120 0.00874
−0.08 1.17 >255 0.094 0.165 10.75 0.158 0.120 0.00958
−0.13 1.31 >234 0.109 0.191 9.29 0.16 0.124 0.00949
−0.19 1.48 >234 0.120 0.220 8.05 0.175 0.146 0.01288
−0.24 1.64 >213 0.137 0.247 7.17 0.186 0.163 0.01447
−0.30 1.85 >213 0.147 0.283 6.26 0.186 0.163 0.01498

Table 2. Summary of PIV results.
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Figure 10. Shear-layer growth rate as a function of velocity ratio λ.

Although the entire profile is not well represented by the error function, the middle
portion of the shear layer used in the least-squares fit matches well with the error
function shape, hence the technique is an accurate method for calculating the vorticity
thickness growth rate, since the maximum velocity gradient falls in this region.
Additionally, the vorticity thickness is approximately 1.8 times the experimental
thickness, fairly independent of velocity ratio. Table 2 summarizes the various growth
rate values for each velocity ratio, as well as peak turbulence statistics and streamwise
locations where self-similarity was established.

The vorticity thickness growth rates found for all six cases, as measured with PIV, are
shown in figure 10 along with results from literature. The growth rates are normalized
by the growth rate of the single-stream shear layer, a method that helps to reduce
scatter caused by facility-dependent effects. This is equivalent to the common manner
of presenting growth rates in terms of σ0/σ where σ0 is the spreading parameter for the
single-stream shear layer. Because of the variety of shear-layer thickness definitions
used in the research community, some conversions were required for some of the data
referenced from other studies. A qualitative examination of the trend seems to indicate
a quasi-linear behaviour for data obtained in countercurrent shear layers, i.e. for
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λ� 1. This would correspond to the first-order approximation (linear correlation) of
Brown & Roshko (1974). The error bars presented for the present data are associated
with uncertainties in the curve-fitting process to obtain the growth rate parameter σ .

The curves on the plot are the first- and second-order growth rate solutions of
Brown & Roshko (1974). Both relations reasonably capture the trends for coflowing
shear layers, though only the first-order form matches the experimental trend for the
countercurrent shear layers. The turbulence statistics presented later will shed further
light on the shear-layer development, and, in particular, connections that can be made
between the flow response and predictions of the spatio-temporal stability applied to
the countercurrent shear layer.

The shear layers grow linearly with the streamwise coordinate in the self-similar
regime. Thus, iso-velocity contours will be linear. The slopes of the iso-velocity lines
for the 95 %, 50 % and 5 % normalized velocity contours are shown in figure 11 as a
function of the normalized velocity ratio. These points represent the edges and mid-
point of the shear layer. Also included in the plot are values from the present hot-wire
study (at λ= 1) as well as data from the comprehensive coflowing study of Spencer &
Jones (1971). There is a distinct linear trend for all data when the normalized velocity
ratio λ is used, an observation that is supported by the generally linear trend of the
shear-layer growth rates presented in figure 10. Ideally, more data points would be
available, but there appears to be a universal behaviour across all velocity ratios. With
these linear fits, the shear-layer location can be approximated for an arbitrary velocity
ratio. As has been noted by several workers (e.g. Yule 1971), the shear-layer centreline
moves toward the low-speed side as λ is increased. It is worth mentioning that the
relationship between r and λ is nonlinear, where modest levels of counterflow (in
terms of reverse velocity U2) produce large changes in the velocity ratio parameter λ.

Figures 10 and 11 are surprising since they show that the shear-layer growth trend
is consistent for both coflowing and counterflowing shear layers, yet we expect some
change in the flow due to a change in the stability characteristics for λ> 1.315. We
must look in both the mean and fluctuating velocity fields for manifestations of a
stability transition. Figure 12 shows peak streamwise turbulence measurements over
a range of velocity ratios. With the exception of the present study and Olsen (1999),
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the measurements were made with hot wires. There is large scatter due to facility
and measurement differences. The most notable is the single-stream layer where the
placement of lower walls and endplates severely alters the entrainment field and has
a significant effect on the mixing (Husain & Hussain 1979). Even in the present study
with the same facility, a 16 % difference was found in the single-stream turbulence
level between the two measurement techniques; only results from PIV were included
for the present study.

The prevailing trend in the coflowing regime is a decrease in peak turbulence
intensity with decreasing velocity ratio r . This is most dramatic at high coflow levels
and almost levels off as the single-stream case is approached, although this trend may
be contaminated by insufficient self-similarity definition for coflowing shear layers, as
wake effects from the trailing edge may yet be present particularly at high levels of
coflow. It is hard to decipher the exact trend as very few studies have been conducted
at high-coflow levels. In contrast to this trend, the peak turbulence intensity is abruptly
increased as r is reduced below −0.13.

Figure 13 shows the variation of the peak values of the fluctuating velocity com-
ponents as well as the Reynolds stress and isotropy as a function of velocity ratio
for negative r values. The trends are very similar for all quantities shown. It appears
that there is an abrupt change in the peak turbulence quantities for counterflow levels
above 13 %. In addition, the turbulence goes through a transition to higher isotropy
suggesting enhanced three-dimensionality. In fact, for the counterflow layers up to
r = −0.13, v′

max/u
′
max = 0.76 but the relation shifts to v′

max/u
′
max =0.88 for the highest

two counterflow layers, indicating a transition in the nature of the turbulence between
r ∼= −0.1 and −0.2.

4.1. Similarity results

The quantity of data collected for each velocity ratio is very high. Once the self-
similar region is determined, both the mean and turbulent quantities were collapsed
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using the appropriate scaling variables, obtaining smooth representations of the
self-preserving profiles. This is effectively a streamwise averaging process for the self-
similar mean and fluctuating velocity profiles. This allowed for a careful examination
of the countercurrent shear-layer characteristics over the range of conditions studied.

Figure 14 presents the self-similar velocity profiles for the single-stream and counter-
current shear layers. Included in the data for reference is the moderately high coflowing
velocity ratio (λ= 0.33) of Mehta (1991) and the error function. It is clear that the
Mehta profile tends to agree well with the error function, which is a symmetric profile.
For the present study, the velocity profiles have nominally the same shape, although
the high counterflow level (λ= 1.85) shows slight deviation on the low-speed side
of the shear layer. Comparing the current results to the Mehta data and the error
function, it is clear that shear layers with counterflow or low coflow have a different
shape from high coflowing shear layers. It appears that the velocity profile transitions
away from a symmetric shape as coflow is decreased.

The conservation of mass can be used to help understand this observation. Assuming
two-dimensional self-similar behaviour, the conservation of mass can be used to show

σ (V 1 − V 2)

U 1 − U 2

=

∫ +∞

−∞
f ′(η)η dη, (4.6)

where f (η) is the normalized self-similar velocity profile, η is the similarity parameter
defined in (4.2), and V 1 and V 2 are the cross-stream velocities in the two free-streams.
The integration in (4.6) becomes zero if the derivative of the velocity profile is
symmetric (as is the case for the error function). For shear layers that have strong
entrainment, the cross-stream velocity difference is relatively large. This requires the
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derivative of the self-similar velocity profile to be asymmetric, otherwise the integral
goes to zero. Hence, for shear layers that have non-zero normalized entrainment, the
velocity profile cannot be represented by a symmetric function (such as the error
function). The fact that high coflowing shear layers seem to have symmetric velocity
profiles suggests negligible induced entrainment in the free streams. Note that strong
coflowing shear layers entrain fluid, but do not induce a cross-stream velocity in the
free streams because the fast-moving streams naturally flow into the mixing region
as the shear layer grows. Equation (4.6) also shows the proportional relationship
between shear-layer growth and entrainment.

It is not purely the mean field that determines the turbulent field, but rather a
mutual interaction between the two. Figure 15 shows the shapes of the composite
streamwise fluctuating velocity profiles (averaged over the region of self-similarity)
for the six cases as measured with PIV. The turbulent profiles for the first three
cases (namely λ=1.0, 1.17, 1.31) overlap very closely. However, the self-similar shape
deviates sharply for counterflow levels above λ∼ 1.3. The trend in the peak values
was seen in figure 13, but these profiles show that the increase occurs across the entire
shear layer.

The transverse velocity fluctuation and Reynolds stress profiles are shown in figures
16 and 17, respectively. Similar trends can be seen in all turbulent quantities with v′2

and u′v′ differences being even more dramatic than in u′2. Noting that the shape of the
mean velocity contour is nominally invariant, the Reynolds stress profiles are evidence
of a fundamental difference in turbulent energy production. For a fixed shear-layer
thickness, the turbulent energy production term at 30 % counterflow is approxi-
mately 75 % larger than a single-stream layer with the same driving shear �U .

From 0 % to 13 % counterflow, the turbulent profiles collapse, indicating that
there is a common mechanism for generating the turbulence that scales with growth
rate and velocity difference �U . Above 13 % counterflow, there is an increase in all
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turbulent transport terms. Since the mean profiles were all nominally similar, there
must be an enhanced mechanism for turbulent energy production above approximately
λ∼ 1.3. Coincidentally perhaps, linear stability theory predicts a transition at λ= 1.315
(Huerre & Monkewitz 1985) for the hyperbolic-tangent function, which is based upon
a laminar shear-layer solution. Beyond this critical velocity ratio, non-convecting
disturbances are amplified in time, namely the onset of absolute instability is reached.
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The turbulent transport quantities suggest a transition occurring at counterflow
levels above approximately 13 %, yet the shear-layer growth appears to be nominally
linear over the full range of conditions explored. The momentum and mass conserva-
tion equations for the self-similar two-dimensional shear layer give additional insight
to these observations. The mean streamwise velocity can be represented as

U = �Uf (λ; η) + U 2, (4.7)

which upon substitution into the two-dimensional continuity equation yields an
expression for the self-similar mean traverse velocity of

V = V 2 +
�U

σ

[
ηf (λ; η) −

∫ η

−∞
f (λ; η) dη

]
. (4.8)

These forms can be substituted into the streamwise momentum equation where the
boundary-layer approximations have been employed and the viscous terms neglected,
namely:

U
∂U

∂x
+ V

∂U

∂y
+

∂u′v′

∂y
= 0. (4.9)

A self-similar representation for the Reynolds stresses is assumed to follow the form

u′v′ = �U 2g(λ; η). (4.10)

Note that up to this point no assumption has been made regarding the possible
dependencies of the self-similar functions f and g on the velocity ratio λ. Substitution
of the above presented forms of U, V and u′v′ into the momentum equation results in

−U 2ηf
′(λ; η) + V 2σf ′(λ; η) − �uf ′(λ; η)

∫ η

−∞
f (λ; η) dη + �uσg′(λ; η) = 0. (4.11)
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An equation analogous to (4.11) is presented in Tennekes & Lumley (1972) for free
shear layers. Their analysis is based on a single-stream shear layer assuming a zero
mean traverse velocity in the middle of the shear layer.

Two assumptions will be made to advance the analysis. The first assumption is the
linear relationship of the growth rate with λ, namely:

1

σ
=

1

σ0

U 1 − U 2

U 1 + U 2

=
1

σ0

λ, (4.12)

where σ0 is the spreading parameter for λ=1. This assumption is supported by figure
10. The second assumption, based on experimental observation in the present study,
is the assumption that the traverse velocity of the high-speed stream V 1 is zero. This
assumption along with (4.8) yields

V 2 = −�U

σ
C1, (4.13)

where C1 represents the bracketed term in (4.8) to +∞ and is only a function of the
mean streamwise velocity similarity function f (λ; η). Implementing these equations
into the momentum equation leads to

−1 − λ

2
ηf ′(λ; η) − λC1f

′(λ; η) − λf ′(λ; η)

∫ η

−∞
f (λ; η) dη + σ0g

′(λ; η) = 0. (4.14)

At this point, we will assume that the mean streamwise velocity function f is
independent of λ, an assumption substantiated by figure 14. Application of this
equation at λ= 1 yields

−C1f
′(η) − f ′(η)

∫ η

−∞
f (η) dη + σ0g

′(λ = 1; η) = 0, (4.15)

an expression that will be used subsequently. In order to explore the sensitivity of the
interaction between the mean and turbulent flow fields as a function of the velocity
ratio, the derivative of (4.14) with respect to λ results in

1
2
ηf ′(η) − C1f

′(η) − f ′(η)

∫ η

−∞
f (η) dη + σ0

∂g′(λ; η)

∂λ
= 0. (4.16)

Equations (4.14) and (4.15) can be combined forming

1
2
ηf ′(η) − σ0g

′(λ = 1; η) + σ0

∂g′(λ; η)

∂λ
= 0. (4.17)

Noting that the two left-hand terms are independent of λ, resulting in

∂g′(λ; η)

∂λ
= constant, (4.18)

a statement that the Reynolds stress profiles change at a linear rate with λ. If we
observe the present shear-layer data for λ� 1.31, the constant in (4.18) must be zero
since the normalized Reynolds stress profiles are the same. Figure 17 illustrates the
fact that the Reynolds stress profiles drastically change for λ> 1.31, yet the shear
layer continues linear growth with respect to λ. It is clear that (4.16) cannot hold
for the full range of counterflow cases studied here, since the normalized Reynolds
stress profiles collapse up to λ=1.31, then increase at higher counterflow levels. The
primary assumptions used to derive (4.16) are valid over the full range of conditions,
suggesting the departure in the collapse of the turbulence profiles must coincide with
a development of three-dimensional mean flow.
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To further explore the issue of three-dimensional mean flow, the measured transverse
velocity difference across the shear layer is normalized and is presented in figure 18.
The normalized velocity difference for a two-dimensional shear layer is expected to
be a constant value based on (4.13). It is clear from the figure that a transition occurs
above λ= 1.31 where significantly higher levels of entrainment occur in comparison
to a two-dimensional shear layer with the same spreading rate. Hence, there is
abundant evidence that one of the manifestations of the apparent stability transition
includes the development of mean flow three-dimensionality. It is suspected that a
flow of this nature will typically have a stronger dependence on the experimental
configuration. Note that if the flow were to return to a two-dimensional mean flow
state in the post-transition regime, the proportional relationship between shear-layer
growth and entrainment would force the normalized entrainment velocity to return
to the pre-transition level of approximately −0.45.

5. Conclusions
Spatially developing countercurrent shear layers were examined. An invariant

primary velocity of U1 = 31 m s−1 was used, and velocity ratios of r =0.00, −0.09,
−0.13, −0.19, −0.24 and −0.30 were studied. Hot-wire anemometry was used to gain
a qualitative view of the entire flow field and PIV was used to quantify a region
of self-preserving flow. Since there is a considerable amount of data on coflowing
shear layers, the present results should help add to the existing knowledge such that
shear-layer characteristics can be predicted over a very large range of velocity ratios.

The shear-layer growth rate was found to increase with counterflow at a rate
nominally predicted by low-order analytical models. The growth rate of a single-
stream shear layer was increased by approximately 100 % when 30 % counterflow
was applied, illustrating the nonlinear effect of counterflow (growth is linear in λ).
Peak turbulence levels were also increased by up to 30 %. Trends for peak turbulence
level versus velocity ratio up to λ∼ 1.3 compared well with previous coflowing studies.
However, above a critical velocity ratio of approximately λ=1.3, turbulence levels
increased.
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When properly normalized, mean velocity profiles were found to have a nominally
consistent shape regardless of velocity ratio. However, the turbulent profiles were
found to change drastically above a critical velocity ratio, which corresponds
reasonably well to the transition to absolute instability as predicted by linear stability
analysis. It was determined that mean flow three-dimensionality is present for λ> 1.3.

The present results greatly expand our understanding of countercurrent shear
layers and add to the coflowing studies of the past. The basic shape of the mean
and turbulent velocity fields was found for countercurrent shear layers, which will
be useful as a base for comparing turbulence models, as past models have generally
performed poorly in separated flows where counterflow is present. The study was
successful in quantifying fully developed countercurrent shear layers and finding a
fundamental change in the shear-layer behaviour above a critical level of counterflow.

The transition observed at a critical velocity ratio λ∼ 1.3 in a self-similar turbulent
shear layer is remarkably coincident with predictions from spatio-temporal linear
theory where λcr = 1.315. The theory indicates the onset of absolute instability when
the counterflow level in a planar laminar shear layer exceeds 13.6 % of the primary
stream. In practice, the presence of locally absolutely unstable flow may lead to global
instability. The effect of the skewness of the middle of the shear layer has been found
to have no effect on the subsequent analysis and therefore has been neglected.

The authors would like to acknowledge the generous support of the Office of Naval
Research under contract N00014-01-1-0644 as well as the guidance they have received
from technical monitor Dr Gabriel D. Roy.
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